19 - Zdroje


Alabdulaziz, M. S., Aldossary, S. M., Alyahya, S. A., & Althubiti, H. M. (2021). The effectiveness of the GeoGebra Programme in the development of academic achievement and survival of the learning impact of mathematics among secondary stage students. Education and Information Technologies, 26, 2685–2713. https://doi.org/10.1007/s10639-020-10371-5

Budai, L. (2012). A possible general approach of the Apollonius problem with the help of GeoGebra. Annales Mathematicae et Informaticae, 40, 163–173.

Choate, J., Devaney, R. L., & Foster, A. (1999). Fractals:A tool kit of dynamics activities. Key Curriculum Press.

Cibien, M. C., Del Zozzo, A., & Rogora, E. (2023). The use of GeoGebra for exploring some constructions of Euclid, Archimedes, and Apollonius. In Thirteenth Congress of the European Society for Research in Mathematics Education (CERME13). Alfr´ed R´enyi Institute of Mathematics; ERME.

Court, N. A. (1961). Historically speaking: The problem of Apollonius. Mathematics Teacher, 54 (6), 444–452.

Divišová, B. (2013). Fraktály a jak o nich učit. Učitel matematiky, 21 (3), 144–158.

Falconer, K. (2014). Fractal geometry: Mathematical foundations and applications. John Wiley & Sons.

Ibáñez Torres, R. (2017). Ctvrtý rozmer: je náš svet jen stínem jiného sveta? Praha: Dokorán.

Jones, K., Mackrell, K. & Stevenson I. (2009). Designing digital technologies and learning activities for different geometries. In C. Hoyles, C & J. Lagrange (Eds.), Mathematics Education and Technology - Rethinking the Terrain (pp. 47–60). Springer.

Lesmoir-Gordon, N., Rood, W., & Edney, R. (2006). Introducing: Fractal geometry. Icon Books.

Linton, O. (2021). Fraktály: Na hraně chaosu. Dokořán.

Mandelbrot, B. B. (2022). The fractal geometry of nature. Echo Point Books & Media.

Muirhead, R. F. (1895) On the number and nature of the solutions of the Apollonian contact problem. Proceedings of the Edinburgh Mathematical Society, 14, 135-147.

Nocar, D., & Dofková, R. (2020). Apollonius’ problems in secondary education using ICT. In EDULEARN20 Proceedings (pp. 3572–3580). IATED. https://doi.org/10.21125/edulearn.2020.0998

Peitgen, H., Jurgens, H., & Saupe, D. (1992). Chaos and fractals: New frontiers of science. Springer-Verlag.

Peitgen, H., Jurgens, H., Saupe, D., Maletsky, E., Perciante, T., & Yunker, L. (1993). Fractals for the classroom: Strategic activities volume one. Springer-Verlag.

Sklenáriková, Z. (2004) K metódam riešenia Apolloniovej úlohy. Matematika v proměnách věků. III, 45-55.


předchozí/další